Landscape-scale research quantifying ecological connectivity is required to maintain the viability of populations in dynamic environments increasingly impacted by anthropogenic modification and environmental change. To evaluate how surface water …
Landscape connectivity is important for the long-term persistence of species inhabiting dryland freshwater ecosystems, with spatiotemporal surface-water dynamics (e.g., flooding) maintaining connectivity by both creating temporary habitats and providing transient opportunities for dispersal.
Periodically inundated floodplain areas are hot spots of biodiversity and provide a broad range of ecosystem services but have suffered alarming declines in recent history. Despite their importance, their long-term surface water (SW) dynamics and hydroclimatic drivers remain poorly quantified on continental scales.
The usage of time series of Earth observation (EO) data for analyzing and modeling surface water extent (SWE) dynamics across broad geographic regions provides important information for sustainable management and restoration of terrestrial surface water resources, which suffered alarming declines and deterioration globally.
Seasonally continuous long-term information on surface water and flooding extent over subcontinental scales is critical for quantifying spatiotemporal changes in surface water dynamics. We used seasonally continuous Landsat TM/ETM + data and generic random forest-based models to synoptically map the extent and dynamics of surface water and flooding (1986–2011) over the Murray–Darling Basin (MDB).
Detailed information on the spatiotemporal dynamic in surface water bodies is important for quantifying the effects of a drying climate, increased water abstraction and rapid urbanization on wetlands. The Swan Coastal Plain (SCP) with over 1500 …
Detailed information on the spatiotemporal dynamic in surface water bodies is important for quantifying the effects of a drying climate, increased water abstraction and rapid urbanization on wetlands.